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ABSTRACT
We start with an introduction to topology and then we move on
to classify connected, compact 2−dimensional manifolds into three
categories: the sphere, connected sum of tori, and connected sum
of projective planes.
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1. Introduction

In this paper, we will prove an interesting result about compact surfaces. The paper begins with
Section 2 by introducing concepts from topology that will be required. This section assumes no prior
knowledge of topology. In this section, we also prove the lemmas and theorems that are useful in
building the required theory.
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Before moving on to Section 4, we prove two basic theorems about continuous functions in Section 3
along with one other result about R. In Section 4, we introduce the concept of manifolds which will
shall be explored for the rest of the paper. After finishing the proof of our desired theorem in Section
11, we briefly talk about the Euler characteristic in Section 12.
We will be following the text, Topology [1] till Section 3 and then A basic course in algebraic topology
[2] for the rest of the paper.

2. Topology

2.1. Basic Definitions

Terminology: We shall say A intersects B if A ∩B 6= ∅.

Definition 2.1. A topology on a setX is a collection T of subsets ofX having the following properties:
1. ∅ and X are in T .
2. The union of elements of any subcollection of T is in T .
3. The intersection of the elements of any finite subcollection of T is in T .

If X is a topological space with topology T , we say that a subset U of X is an open set of X if U
belongs to the collection T .
∅ and X are both open, arbitrary unions and finite intersections of open sets are open.
We shorten the statement “U is an open set containing x” to the phrase “U is a neighbourhood of x.”
Formally, a topological space is an ordered pair (X, T ) consisting of a set X and a topology T on X,
but we often omit the mention of T if no confusion will arise.

Definition 2.2. If X is a set, a basis for a topology on X is a collection B of subsets of X (called
basis elements) such that

1. For each x ∈ X, there is at least one basis element B containing X.
2. If x belongs to the intersection of two basis elements B1 and B2, then there is a basis element
B3 containing x such that B3 ⊂ B1 ∩B2

If B satisfies these two conditions, then we define topology T generated by B as follows: A subset
U of X is said to be open in X (that is, to be an element of T ) if for each x ∈ U , there is a basis
element B ∈ B such that x ∈ B and B ⊂ U.
It is easy to check that T obtained this way is indeed a topology and we leave this to the reader.
Also, note that T itself acts as a basis for itself. This means that one can show that a set V is open
by showing that for all x ∈ V, there exists an open set Ux such that x ∈ U ⊂ V.

Lemma 2.3. Let X be a set; let B be a basis for a topology T on X. Then T equals the collection of
all unions of elements of B.

Proof. Given a collection of elements of B, they are also elements of T . As T is a topology, their union
is in T . Conversely, given nonempty U ∈ T , choose for each x ∈ U an element Bx of B such that
x ∈ Bx ⊂ U. Then U =

⋃
x∈U Bx, so U equals a union of elements of B.

The empty set is regarded as the “empty” union.

Lemma 2.4. Let X be a topological space. Suppose that C is a collection of open sets of X such that
for each open set U of X and each x in U , there is an element C of C such that x ∈ C ⊂ U. Then C is
a basis for the topology of X.

Proof. It is easy to show that C is a basis. Given any x ∈ X, there is, by hypothesis a set C ∈ C such
that x ∈ C as X is an open set. To check the second condition, let x ∈ C1 ∩ C2, where C1 and C2

belong to C. As C1 and C2 are open, so is C1 ∩ C2. Therefore, there exists, by hypothesis, an element
C3 in C such that x ∈ C3 ⊂ C1 ∩ C2.
Let T be the collection of open sets of X; we show that the topology T ′ generated by C equals the
topology T . First, note that if U ∈ T and if x ∈ U, then there is by hypothesis an element C of C
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such that x ∈ C ⊂ U. It follows that U belongs to the topology T ′, by definition. Conversely, if W
belongs to the topology T ′, then W equals a union of elements of C, by the preceding lemma. Since
each element of C belongs to T and T is a topology, W also belongs to T .

Definition 2.5. If B is the collection of all open intervals in the real line,

(a, b) = {x | a < x < b},

the topology generated by B is called the standard topology on the real line.

From now on, when we refer to R, we will refer to the topological space that is obtained by giving the
set R, the standard topology.

Definition 2.6. Let X and Y be topological spaces. The product topology on X×Y is the topology
having as basis the collection B of all sets of the form U × V , where U is an open subset of X and V
is an open subset of Y.

Definition 2.7. We can extend our notion of a product space by taking a Cartesian product of more
than one space. In this paper, we shall be restricting ourselves to finite products.
Given the cartesian product

X1 ×X2 × · · · ×Xn,

we define the topology on the product by taking as basis all sets of the form U1 × U2 × · · ·Un, where
Ui is an open set in Xi for each i.
As before, we shall call this the product topology.

Rn is the space obtained when each Xi = R in the above definition.

Definition 2.8. Let X be a topological space with topology T . If Y is a subset of X, the collection

TY = {Y ∩ U |U ∈ T }

is a topology on Y , called the subspace topology .
With this topology, Y is called a subspace of X; its open sets consist of all intersections of open sets
of X with Y.

Lemma 2.9. If B is a basis for the topology of X, then the collection

BY = {B ∩ Y |B ∈ B}

is a basis for the subspace topology on Y.

Proof. Given U open in X and given y ∈ U ∩Y, we can choose an element B of B such that y ∈ B ⊂ U.
Then y ∈ B ∩ Y ⊂ U ∩ Y. It follows from Lemma 2.4 that By is a basis for the subspace topology on
Y.

Definition 2.10. A subset A of a topological space X is said to be closed if the set X −A is open.

Theorem 2.11. Let X be a topological space. Then the following conditions hold:
1. ∅ and X are closed.
2. Arbitrary intersections of closed sets are closed.
3. Finite unions of closed sets are closed.

Proof. Follows from the properties of open sets and DeMorgan’s Laws which say that,

X −
⋂
α∈J

Aα =
⋃
α∈J

(X −Aα),

X −
⋃
α∈J

Aα =
⋂
α∈J

(X −Aα).
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If Y is a subspace of X, we say that a set A is closed in Y if A is a subset of Y and if A is closed in
the subspace topology of Y (that is, if Y −A is open in Y ).

Theorem 2.12. Let Y be a subspace of X. Then a set A is closed in Y if and only if it equals the
intersection of a closed set of X with Y.

Proof. Assume that A = C ∩Y, where C is closed in X. Then X−C is open in X, so that (X−C)∩Y
is open in Y, by definition of the subspace topology. But (X −C) ∩ Y = Y −A. Hence Y −A is open
in Y, so that A is closed in Y.
Conversely, assume that A is closed in Y. Then Y −A is open in Y, so that by definition it equals the
intersection of an open set U of X with Y. The set X − U is closed in X, and A = Y ∩ (X − U), so
that A equals the intersection of a closed set of X with Y, as desired.

Definition 2.13. Given a subset A of a topological space X, the interior of A is defined as the union
of all open sets contained in A, and the closure of A is defined as the intersection of all closed sets
containing A.

The interior of A is denoted by IntA and the closure of A by Ā. IntA is an open set and Ā is a closed
set; furthermore

IntA ⊂ A ⊂ Ā

Lemma 2.14. A set is closed if and only if it equals its closure.

Proof. Let A be a subset of a topological space X.
Assume that A = Ā. By definition of Ā, we have it that Ā equals the intersection of closed sets. Thus,
Ā is closed and so is A.
Conversely, assume that A is closed. Then, A is a closed set containing A. Thus, Ā ⊂ A, by definition.
As we already have it that A ⊂ Ā, we have shown that A = Ā.

Definition 2.15. A topological space X is called a Hausdorff space if for each pair x1, x2 of distinct
points of X, there exist neighbourhoods U1, and U2 of x1 and x2, respectively, that are disjoint.

Theorem 2.16. The product of finitely many Hausdorff spaces is a Hausdorff space.

Proof. Let X1, X2, · · · , Xn be Hausdorff spaces. Choose distinct elements x1 = (α1, α2, · · · , αn)
and x2 = (β1, β2, · · · , βn) of the product space. WLOG, assume that α1 6= β1. As X1 is Hausdorff,
there exist disjoint neighbourhoods, U1 and U2 of α1 and β1, respectively. Thus, U1×X2×· · ·Xn and
U2 ×X2 × · · ·Xn are disjoint neighbourhoods of x1 and x2, respectively.

Theorem 2.17. A subspace of a Hausdorff space is a Hausdorff space.

Proof. Let X be a Hausdorff space and Y a subspace of X. Let x1 and x2 be distinct points in Y. As X
is Hausdorff, there exist disjoint neighbourhoods of x1 and x2 which are open in X. The intersections
of those neighbourhoods with Y are neighbourhoods of x1 and x2 that are open in Y, as desired.

Lemma 2.18. R is a Hausdorff space.

Proof. Let x1 and x2 be distinct real numbers. Let ε := |x1−x2|
2 .

Define U1 := (x1 − ε, x1 + ε) and U2 := (x2 − ε, x2 + ε).
Thus, U1 and U2 are disjoint neighbourhoods of x1 and x2, respectively.

Corollary 2.19. By the preceding lemma and Theorem 2.16, we have it that Rn is a Hausdorff space
for all n ∈ Z+.

Definition 2.20. A metric on a set X is a function

d : X ×X −→ R

having the following properties:
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1. d(x, y) ≥ 0 for all x, y ∈ X; equality holds if and only if x = y.
2. d(x, y) = d(y, x) for all x, y ∈ X.
3. (Triangle inequality) d(x, y) + d(y, z) ≥ d(x, z), for all x, y, z ∈ X.

Definition 2.21. Given ε > 0, consider the set

Bd(x, ε) = {y | d(x, y) < ε}

of all points y whose distance from x is less than ε. It is called the ε−ball centered at x.

We omit the subscript and write B(x, ε) if no confusion arises.

Definition 2.22. If d is a metric on the set X, then the collection of all ε−balls Bd(x, ε), for x ∈ X
and ε > 0, is a basis for topology on X, called the metric topology induced by d.

A set U is open in the metric topology induced by d if and only if for each y ∈ U, there is a δ > 0
such that Bd(y, δ) ⊂ U. (Follows from definition of a basis for a topology.)

Definition 2.23. Let X be a metric space with metric d. A subset A of X is said to be bounded if
there is some number M such that

d(a1, a2) ≤M

for every pair a1, a2 of point of A.

Definition 2.24. Let x = (x1, · · · , xn) , y = (y1, · · · , yn) ∈ Rn. We define the euclidean metric
d on Rn by the equation

d(x,y) = ‖x− y‖ =
[
(x1 − y1)

2
+ · · ·+ (xn − yn)

2
]1/2

.

We define the square metric ρ by the equation

ρ(x,y) = max {|x1 − y1| , · · · , |xn − yn|} .

Definition 2.25. Given x = (x1, · · · , xn) in Rn, we define the norm of x by the equation

‖x‖ =
(
x21 + · · ·+ x2n

)1/2
.

Theorem 2.26. The topologies on Rn induced by the euclidean metric d and the square metric ρ are
the same as the product topology on Rn.

Proof. It is simple algebra to check that

ρ(x,y) ≤ d(x,y) ≤
√
nρ(x,y).

The first inequality shows that
Bd(x, ε) ⊂ Bρ(x, ε)

for all x and ε. Similarly, the second inequality shows that

Bρ(x, ε/
√
n) ⊂ Bd(x, ε)

for all x and ε. It is straightforward to conclude that the two metric topologies are the same.
Now, we show that the product topology is the same as that given by the metric ρ.
Let Tp denote the product topology and Tρ the metric topology induced by ρ. First, let

B = (a1, b1)× · · · × (an, bn)

be a basis element for the product topology, and let x = (x1, · · · , xn) be an element of B. For each
i, there is an εi such that

(xi − εi, xi + εi) ⊂ (ai, bi) ;
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choose ε = min{ε1, · · · , εn}. Then Bρ(x, ε) ⊂ B. Thus, Tp ⊂ Tρ.
Conversely, let Bρ(x, ε) be a basis element for the ρ−topology. Given the element y ∈ Bρ(x, ε), we
need to find a basis element B for the product topology such that

y ∈ B ⊂ Bρ(x, ε).

But this is trivial, for

Bρ(x, ε) = (x1 − ε, x1 + ε)× · · · × (xn − ε, xn + ε)

is itself a basis element for the product topology.
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2.2. Continuous Functions

Definition 2.27. Let X and Y be topological spaces. A function f : X −→ Y is said to be continuous
if for each open subset V of Y , the set f−1(V ) is an open subset of X.

Theorem 2.28. The composition of continuous functions is a continuous function.

Proof. Let X, Y, Z be topological spaces and let f : X −→ Y and g : Y −→ Z be continuous
functions.
We wish to show that the function g ◦ f : X −→ Z is a continuous function.
Let U be a set open in Z. As g is continuous, g−1(U) is open in Y. As f is continuous, f−1

(
g−1(U)

)
is open in X.

Continuity of f ◦ g follows from
(
g ◦ f

)−1
(U) = f−1

(
g−1(U)

)
.

Definition 2.29. Let X and Y be topological spaces; let f : X −→ Y be a bijection. If both the
function f and the inverse function f−1 : Y −→ X are continuous, then f is called a homeomorphism.

Another way to define a homeomorphism is to say that it is a bijective correspondence f : X −→ Y
such that f(U) is open if and only if U is open.
This remark shows that a homeomorphism f : X −→ Y gives us a bijective correspondence not only
between X and Y but between the collections of open sets of X and of Y. As a result, any property
that is expressed entirely in terms of the topology of X (that is, in terms of open sets of X) yields,
via the correspondence f, the corresponding property for the space Y. Such a property of X is called
a topological property.

2.3. Quotient Topology

Definition 2.30. Let X and Y be topological spaces; let p : X −→ Y be a surjective map. The map
p is said to be a quotient map provided a subset U of Y is open in Y if and only if p−1(U) is open
in X.

An equivalent condition for p to be a quotient map is to require that a subset A of Y be closed in Y
if and only if p−1(A) is closed in X. Equivalence of the two conditions follows from the equation

f−1(Y −B) = X − f−1(B).

Definition 2.31. A map f : X −→ Y is said to be an open map if for each open set U of X, the set
f(U) is open in Y.
Similarly, it is said to be an open map if for each closed set U of X, the set f(U) is open in Y.

Lemma 2.32. If p : X −→ Y is a surjective continuous map that is either open or closed, then p is a
quotient map.

Proof. Let us assume that p is an open map. A similar proof will work for when p is a closed map.
Let U be a given subset of Y. Assume that U is open in Y. Then, p−1(U) is open in X as p is continuous.
Conversely, assume that p−1(U) is open in X. As p is surjective, we have that p(p−1(U)) = U. As p is
an open map, U must be open.

Remark: There are quotient maps that are neither open nor closed. Thus, being either open or close
is a sufficient but not a necessary condition.

Example. Let X be the subspace [0, 1] ∪ [2, 3] of R, and let Y be the subspace [0, 2] of R.
The map p : X −→ Y defined by

p(x) =

{
x for x ∈ [0, 1]
x− 1 for x ∈ [2, 3]

is readily seen to be surjective, continuous, and closed. Therefore, it is a quotient map. It is not,
however, an open map; the image of the open set [0, 1] of X is not open in Y.
It is clearly not a homeomorphism either as it not bijective.
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Lemma 2.33. The composite of two quotient maps is a quotient map.

Proof. The composition of two surjections is a surjection. The fact that it is a quotient map follows
from the equation

p−1
(
q−1(U)

)
= (q ◦ p)−1(U).

Definition 2.34. If X is a space and A is a set and if p : X −→ A is a surjective map, then there
exists exactly one topology T on A relative to which p is a quotient map; it is called the quotient
topology induced by p.

Proof. The quotient topology T is defined by letting it consist of those subsets U of A such that p−1(U)
is open in X. It is easy to check that T is a topology. The sets ∅ and A are open because p−1(∅) = ∅
and p−1(A) = X. The other two conditions follow from the equations

p−1

(⋃
α∈I

Uα

)
=
⋃
α∈I

p−1 (Uα) ,

p−1

(
n⋂
i=1

Ui

)
=

n⋂
i=1

p−1 (Ui) .

It is easy to see that T defined as above is the unique topology relative to which p is a quotient map.
This can be demonstrated as follows:
Suppose an element U of T was removed, then U would not be open in A even though p−1(U) is open
in X.
Similarly, if a new element V is added to T , then V would be open in A even though p−1(V ) is not
open in X.

Definition 2.35. Let X be a topological space, and let X∗ be a partition of X into disjoint subsets
whose union is X. Let p : X −→ X∗ be the surjective map that carries each point of X to the element
of X∗ containing it. In the quotient topology induced by p, the space X∗ is called a quotient space
of X.

Given X∗, there is an equivalence relation on X of which the elements of X∗ are the equivalence
classes. One can think of X∗ as having been obtained by “identifying” each set of equivalent points.
We can describe the topology of X∗ in another way. A subset U of X∗ is a collection of equivalence
classes, and the set p−1(U) is just the union of the equivalence classes belonging to U. Thus, the typical
open set of X∗ is a collection of equivalence classes whose union is an open set of X.

Theorem 2.36. Let p : X −→ Y be a quotient map. Let Z be a space and let g : X −→ Z be a
map that is constant on each set p−1({y}), for y ∈ Y. Then g induces a map f : Y −→ Z such that
f ◦ p = g. The induced map f is continuous if and only if g is continuous; f is a quotient map if and
only if g is a quotient map.

X

Y Z

p
g

f

Proof. For each y ∈ Y, the set g(p−1{y}) is a one-point set in Z (since g is constant on p−1({y})).
If we let f(y) denote this point, then we have a well defined map f : Y −→ Z such that for each
x ∈ X, f(p(x)) = g(x). If f is continuous, then g = f ◦ p is continuous (Theorem 2.28).
Conversely, suppose g is continuous. Given an open set V of Z, g−1(V ) is open in X. But
g−1(V ) = p−1(f−1(V )); because p is a quotient map, it follows that f−1(V ) is open in Y. Hence, f is
continuous.
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If f is a quotient map, then g is the composite of two quotient maps and is thus a quotient
map, by Lemma 2.33.
Conversely, suppose that g is a quotient map. Since g is surjective, so is f. Let V be a subset of Z;
we show that V is open in Z if f−1(V ) is open in Y. Now the set p−1(f−1(V )) is open in X because
p is continuous. Since this set equals g−1(V ), the latter is open in X. Then because g is a quotient
map, V is open in Z.

2.4. Connected and Compact Spaces

Definition 2.37. Let X be a topological space. A separation of X is a pair U, V of disjoint
nonempty open subsets of X whose union is X. The space X is said to be connected if there does
not exist a separation of X.

Lemma 2.38. If the sets C and D form a separation of X, and if Y is a connected subspace of X,
then Y lies entirely within either C or D.

Proof. Since C and D are both open in X, the sets C ∩ Y and D ∩ Y are open in Y. These two sets
are disjoint and their union is Y ; if they were both nonempty, they would constitute a separation of
Y. Therefore, one of them is empty. Hence, Y must lie entirely in C or in D.

Theorem 2.39. The union of a collection of connected subspaces of X that have a point in common
is connected.

Proof. Let {Aα} be a collection of connected subspaces of X; let p be a point of
⋂
Aα. We prove that

the space Y =
⋃
Aα is connected. Suppose that Y = C ∪D is a separation of Y. The point p is in one

of the sets C or D; suppose p ∈ C. Given any α: since Aα is connected, it must lie entirely in either C
or D, and it cannot lie in D because it contains the point p of C. Hence Aα ⊂ C for every α, so that⋃
Aα ⊂ C, contradicting the fact that D is nonempty.

Theorem 2.40. The image of a connected space under a continuous map is connected.

Proof. Let f : X −→ Y be a continuous function where X is connected.
Assume that Z = f(X) is not connected. Let A and B be non-empty disjoint open subsets of Z such
Z = A ∪B.
Let A′ = f−1(A). A′ is non-empty as A was a subset of the image of f. As A is open in Z, we have it
that A = U ∩Z for some U open in Y. Thus, A′ = f−1(U)∩ f−1(Z) = f−1(U)∩X is open as f−1(U)
is open in X.
Similarly, B′ = f−1(B) is a non-empty set which is open in X.
Also, A′ and B′ are disjoint and A′ ∪ B′ = X. Therefore, they form a separation of X, contradicting
the assumption that X is connected.

Definition 2.41. Given a ∈ R, the following subsets of R are called rays:
1. (a,∞)
2. [a,∞)
3. (−∞, a)
4. (−∞, a]

Theorem 2.42. R is connected and so are intervals and rays in R.

Proof. Let Y be any of the subsets of R mentioned in the theorem. Note that Y has the following
property:
For every pair of points a, b of Y with a < b, the entire interval [a, b] of points of R is a subset of Y.
Now, assume for the sake of contradiction that Y is the union of disjoint non-empty sets A and B,
each of which is open in Y. Choose a ∈ A and b ∈ B; we may assume that a < b.
The interval [a, b] is a subset of Y. Hence, [a, b] is the union of the disjoint sets

A0 = A ∩ [a, b] and B0 = B ∩ [a, b],

9
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each of which is open in [a, b] in the subspace topology. The sets A0 and B0 are non-empty because
a ∈ A0 and b ∈ B0. Thus, A0 and B0 constitute a separation of [a, b].
Let c = supA0. We show that c belongs neither to A0 nor to B0, which contradicts the fact that [a, b]
is the union of A0 and B0.

Case 1. Suppose that c ∈ B0. Then c 6= a, so either c = b or a < c < b. In either case, it
follows from the fact that B0 is open in [a, b] that there is some interval of the form (d, c] contained
in B0. If c = b, we have a contradiction at once, for d is a smaller upper bound on A0 than c. If c < b,
we note that (c, b] does not intersect A0 (as c is an upper bound on A0). Then

(d, b] = (d, c] ∪ (c, b]

does not intersect A0. Again, d is a smaller upper bound on A0 than c, contrary to construction.

Case 2. Suppose that c ∈ A0. Then c 6= b, so either c = a or a < c < b. Because A0 is open
in [a, b], there must be some interval of the form [c, e) contained in A0. However, we can choose a
point z ∈ R such that c < z < e. Then z ∈ A0, contrary to the fact that c is an upper bound for
A0.

An interesting thing to note in the above proof is that we have not used any algebraic properties of R
but rather, just its order properties.

Definition 2.43. Given points x and y of the space X, a path in X from x to y is a continuous map
f : [a, b] −→ X of some closed interval in the real line into X, such that f(a) = x and f(b) = y. A
space X is said to be path connected if every pair of points of X can be joined by a path in X.

Lemma 2.44. A path connected space is connected.

Proof. Let X be a space that is path connected.
Suppose X = A∪B is a separation of X. Let f : [a, b] −→ X be any path in X. Being the continuous
image of a connected set, the set f([a, b]) is connected, so that it lies entirely in either A or B.
Therefore, there is no path in X joining a point of A to a point of B, contrary to the assumption that
X is path connected.

Example. Consider the space Rn − {0}, where 0 is the origin in Rn. If n > 1, this space is path
connected: Given x and y different from 0, we can join x and y by the straight-line path between
them if that path does not go through the origin. Otherwise, we can choose a point z not on the line
joining x and y, and take the broken-line path from x to z, and then from z to y.

Example. Define the unit sphere Sn−1 in Rn by the equation

Sn−1 = {x | ‖x‖ = 1}.

If n > 1, it is path connected. For the map g : Rn − {0} −→ Sn−1 defined by g(x) = x/‖x‖ is
continuous and surjective; and it is easy to show that the continuous image of path connected space
is path connected.

Lemma 2.45. Every open ball Bd(x, ε) in Rn is connected as well as path connected.

Proof. Define the unit open ball Bn in Rn by the equation

Bn = {x | ‖x‖ < 1}.

We will show that the unit open ball is path connected and hence, connected as well; given any two
points x and y of Bn, the straight-line f : [0, 1] −→ Rn defined by

f(t) = (1− t)x + ty

10



Classification of Surfaces -Aryaman Maithani

lies in Bn. For if x and y are in Bn and t is in [0, 1],

‖f(t)‖ ≤ (1− t)‖x‖+ t‖y‖ < 1.

As any open ball Bd(x, ε) in Rn is homeomorphic to Bn, we have proven the lemma.

Definition 2.46. A collection A of subsets of a space X is said to cover X, or to be a covering of
X, if the union of the elements of A is equal to X. It is called an open covering of X if its elements
are open subsets of X.

Definition 2.47. A space X is said to be compact if every open covering A of X contains a finite
subcollection that also covers X.

Definition 2.48. If Y is a subspace of X, a collection of A of subsets of X is said to cover Y if the
union of its elements contains Y.

Lemma 2.49. Let Y be a subspace of X. Then Y is compact if and only if every covering of Y by
sets open in X contains a finite subcollection covering Y.

Proof. Suppose that Y is compact and A = {Aα}α∈J is a covering of Y by sets open in X. Then the
collection

{Aα ∩ Y |α ∈ J}

is a covering of Y by sets open in Y ; hence a finite subcollection

{Aα1 ∩ Y, · · · , Aαn ∩ Y }

covers Y. Then {Aα1
, · · · , Aαn

} is a subcollection of A that covers Y.
Conversely, suppose that the given condition holds; we wish to prove that Y is compact. Let A′ = {A′α}
be a covering of Y be sets open in Y. For each α, choose a set Aα open in X such that

A′α = Aα ∩ Y.

The collection A = {Aα} is covering of Y by sets open in X. By hypothesis, some finite subcollection
{Aα1

, · · · , Aαn
} covers Y. Then {Aα1

, · · · , A′αn
} is a subcollection of A′ that covers Y.

Theorem 2.50. Every closed subspace of a compact space is compact.

Proof. Let Y be a closed subspace of the compact space X. Given a covering A of Y by sets open in
X, let us form an open covering B of X by adjoining to A the single open set X − Y, that is,

B = A ∪ {X − Y }.

Some finite subcollection of B covers X. If this subcollection contains the set X − Y, discard X − Y ;
otherwise, leave the subcollection alone. The resulting collection is a finite subcollection of A that
covers Y.

Theorem 2.51. Every compact subspace of a Hausdorff space is closed.

Proof. Let Y be a compact subspace of a Hausdorff space X. We shall prove that X − Y is open, so
that Y is closed.
Let x0 be a point of X − Y. We show there is a neighbourhood of x0 that is disjoint from Y. For each
point y of Y, let us choose disjoint neighbourhoods Uy and Vy of the points x0 and y, respectively. We
can do this because X is a Hausdorff space. The collection {Vy | y ∈ Y } is a covering of Y by sets
open in X; therefore, finitely many of them Vy1 , · · · , Vyn cover Y. The open set

V = Vy1 ∪ · · · ∪ Vyn

contains Y, and it is disjoint from the open set

U = Uy1 ∩ · · · ∩ Uyn

11
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formed by taking the intersection of the corresponding neighbourhoods of x0. For if z is a point of V,
then z ∈ Vyi for some i, hence z 6∈ Uyi and so z 6∈ U.
As U is an intersection of finitely many open sets, it is open. Thus, U is a neighbourhood of x0 disjoint
from Y, as desired.

Theorem 2.52. The image of a compact space under a continuous map is compact.

Proof. Let f : X −→ Y be continuous; let X be compact. Let A be a covering of the sets f(X) by
sets open in Y. The collection

{f−1(A) | A ∈ A}

is a collection of sets covering X; these sets are open in X because f is continuous.
Hence, finitely many of them, say

f−1 (A1) , · · · , f−1 (An) ,

cover X. Then the sets A1, · · · , An cover f(X).

Theorem 2.53. The product of finitely many compact spaces is compact.

Proof. Step 1. Suppose that we are given spaces X and Y, with Y compact. Suppose that x0 ∈ X,
and N is an open set of X × Y containing the “slice” {x0} × Y of X × Y. We prove the following:
There is a neighbourhood W of x0 in X such that N contains the entire set W × Y.
The set W × Y is often called a tube about {x0} × Y. First, let us cover {x0} × Y by basis elements
U × V (for the topology of X × Y ) lying in N. The space {x0} × Y is compact, being homeomorphic
to Y. Therefore, we can cover {x0} × Y by finitely many such basis elements

U1 × V1, · · · , Un × Vn.

(We assume that each Ui does contain x0, otherwise we could simply discard it from the finite collection
and still have a covering.) Define

W = U1 ∩ · · · ∩ Un.

The set W is open, and it contains x0.
We assert that the sets Ui × Vi, which were chosen to cover the slice {x0}× Y, actually cover the tube
W × Y. Let (x, y) ∈ W × Y. Consider the point (x0, y) of the set {x0} × Y. Now (x0, y) belongs to
Ui × Vi for some i, so that y ∈ Vi. But x ∈ Uj for every j. Therefore, we have (x, y) ∈ Ui × Vi, as
desired.
Since all the sets Ui × Vi lie in N, and since they cover W × Y, the set W × Y lies in N as well.

Step 2. Now we prove the theorem. Let X and Y be compact spaces. Let A be an open cov-
ering of X × Y. Given x0 ∈ X, the set {x0} × Y is compact and may therefore be covered by finitely
many elements A1, · · · , Am of A. Their union N = A1 ∪ · · · ∪Am is an open set containing {x0}×Y ;
by Step 1, the open set N contains a set W × Y about {x0} × Y, where W is open in X. Then W × Y
is covered by finitely many elements A1, · · · , Am of A.
Thus, for each x ∈ X, we can choose a neighbourhood Wx of x such that the set Wx × Y can be
covered by finitely many elements of A. The collection of all the neighbourhoods Wx is an open
covering of X; therefore by compactness of X, there exists a finite subcollection

{W1, · · · , Wk}

covering X. The union of the tubes

W1 × Y, · · · , Wk × Y

is all of X×Y ; since each may be covered by finitely many elements of A, so may X×Y be covered.

Theorem 2.54. Given a, b ∈ R such that a < b, [a, b] is compact.

12
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Proof. Step 1. Let A be a covering of [a, b] by sets open in [a, b] in the subspace topology. We wish
to prove the existence of a finite subcollection of A covering [a, b]. First we prove the following:
If x is a point of [a, b), then there is a point y > x of [a, b] such that the interval [x, y] can be covered
by one element of A.
Choose an element A of A containing x. As x 6= b and A is open, A contains an interval of the form
[x, c), for some c in [a, b]. Choose a point y in (x, c); then the interval [x, y] is covered by the single
element A of A.

Step 2. Let C be the set of all points y > a of [a, b] such that the interval [a, y] can be cov-
ered by finitely many elements of A. Applying Step 1 to the case x = a, we see that there exists at
least one y, so C is not empty. Let c be the least upper bound of the set C; then a < c ≤ b.

Step 3. We show that c belongs to C; that is, we show that the interval [a, c] can be covered
by finitely many elements of A. Choose an element A of A containing c; since A is open, it contains
an interval of the form (d, c] for some d in [a, b]. If c is not in C, there must be a point z of C lying
in the interval (d, c), because otherwise d would be a smaller upper bound on C than c. Since z is
in C, the interval [a, z] can be covered by finitely many, say n, elements of A. Now [z, c] lies in the
single element A of A, hence [a, c] = [a, z] ∪ [z, c] can be covered by n + 1 elements of A. Thus c is
in C, contrary to assumption.

Step 4. Finally, we show that c = b, and our theorem is proved. Suppose that c < b. Apply-
ing Step 1 to the case x = c, we conclude that there exists a point y > c of [a, b] such that the interval
[c, y] can be covered by finitely many elements of A. We proved in Step 3 that c ∈ C, so [a, c] can be
covered by finitely many elements of A. Therefore, the interval

[a, y] = [a, c] ∪ [c, y]

can also be covered by finitely many elements of A. This means that y ∈ C, contradicting the fact that
c is an upper bound on C.

This is another example of a proof where we have not used any algebraic property of R but just its
order properties.

Theorem 2.55 (Heine-Borel theorem). A subspace A of Rn is compact if and only if it is closed
and is bounded in the euclidean metric d or the square metric ρ.

Proof. It will suffice to consider only the metric ρ; the inequalities

ρ(x, y) ≤ d(x, y) ≤
√
nρ(x, y)

imply that A is bounded under d if and only if it is bounded under ρ.
Suppose that A is compact. Then, by Theorem 2.51, it is closed. Consider the collection of open sets

{Bρ(0,m)|m ∈ Z+} ,

whose union is all of Rn. Some finite subcollection covers A. It follows A ⊂ Bρ(0, M) for some M.
Therefore, for any two points x and y of A, we have ρ(x, y) ≤ 2M. Thus, A is bounded under ρ.
Conversely, suppose that A is closed and bounded under ρ; suppose that ρ(x, y) ≤ N for every pair
x, y of points of A. Choose a point x0 of A, and let ρ(x0, 0) = b. The triangle inequality implies that
ρ(x, 0) ≤ N + b for every x in A. If P = N + b, then A is a subset of the “cube” [−P, P ]n, which is
compact, by Theorem 2.53. Being closed, A is also compact, by Theorem 2.50.

Remark: This does not mean that the same result will hold if we replace the metric d with some
other metric d′, even if d′ induces the same topology. As an example, we may define d′(x, y) :=
min{d(x, y), 1}. It is easy to check that d′ is indeed a metric which induces the same topology.
However, it is not the case anymore that the set of compact sets is the same as the set of closed and
bounded sets. Indeed, every set is bounded with this metric; however, not all closed sets are compact.

13
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3. Theorems from Calculus and Uncountability of R

In this section, we shall now prove some familiar theorems, suitably generalised.
To begin with, we shall first show that the typical ε − δ definition of continuity is equivalent to our
open sets definition when talking about metric spaces.

Theorem 3.1. Let f : X −→ Y ; let X and Y be metric spaces with metrics dX and dY , respectively.
Then continuity of f is equivalent to the requirement that given x ∈ X and given ε > 0, there exists
δ > 0 such that

dX(x, y) < δ =⇒ dY (f(x), f(y)) > ε.

Proof. Suppose that f is continuous. Given x and ε, consider the set

f−1
(
BdY

(
f(x), ε

))
,

which is open in X and contains the point x. It contains some δ−ball BdX (x, δ) centered at x. If y is
in this δ−ball, then f(y) is in the ε−ball centered at f(x), as desired.

Conversely, suppose that the ε − δ condition is satisfied. Let V be open in Y ; we show that
f−1(V ) is open in X. Let x be a point of the set f−1(V ). Since f(x) ∈ V, there is an ε−ball
BdY (f(x), ε) centered at f(x) and contained in V. By the ε− δ condition, there is a δ−ball BdX (x, δ)
centered at x such that f

(
BdX (x, δ)

)
⊂ BdY

(
f(x), ε

)
. Then BdX (x, δ) is a neighbourhood of x

contained in f−1(V ), so that f−1(V ) is open, as desired.

Before going further, let us first define what is a simple order relation.

Definition 3.2. A relation < on a set A is called a simple order relation if it has the following
properties:

(1) (Comparability) For every x and y in A for which x 6= y, either x < y or y < x.
(2) (Non-reflexivity) For no x ∈ A does the relation x < x hold.
(3) (Transitivity) If x < y and y < z, then x < z.

Note that property (1) by itself does not exclude the possibility that for some pair of elements x and
y of A, both the relations x < y and y < x hold. But the properties (2) and (3) combined do exclude
this possibility; for if both x < y and y < x held, transitivity would imply that x < x, contradicting
non-reflexivity.

Definition 3.3. Let X be a set with a simple order relation; assume X has more than one element.
Let B be the collection of all sets of the following types:

1. All open intervals (a, b) in X.
2. All intervals of the form [a0, b), where a0 is the smallest element (if any) of X.
3. All intervals of the form (a, b0], where b0 is the largest element (if any) of X.

The collection B is a basis for a topology on X, which is called the order topology .

Definition 3.4. If X is a set with a simple order relation, and a is an element of X, there are two
subsets of X that are called the open rays determined by a. They are the following:

1. (a, ∞) = {x | x > a}
2. (−∞, a) = {x | x < a}

These are called open rays as these are indeed open if X is given the order topology. Consider, for
example, the ray (a, ∞). If X has a largest element b0, then (a, ∞) equals the basis element (a, b0].
If X has no largest element b0, then (a, ∞) equals the union of all basis elements of the form (a, x),
for x > a. In either case, (a, ∞) is open. A similar argument applies to the ray (−∞, a).
It is easy to check that the usual < relation on R is a simple order relation. Moreover, the standard
topology on R is the same as the order topology as defined above.
Now, we shall prove some familiar theorems from calculus.
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Theorem 3.5 (Intermediate Value Theorem). Let f : X −→ Y be a continuous map, where X
is a connected space and Y is an ordered set in the order topology. If a and b are two points of X and
if r is a point of Y lying between f(a) and f(b), then there exists a point c of X such that f(c) = r.

Proof. Assume the hypothesis of the theorem. The sets

A = f(X) ∩ (−∞, r) and B = f(X) ∩ (r,∞)

are disjoint, and they are nonempty because one contains f(a) and the other contains f(b). Each is
open in f(X), being the intersection of an open ray in Y with f(X). If there were no point c of X such
that f(c) = r, then f(X) would be the union of the sets A and B. Then A and B would constitute
a separation of f(X), contradicting the fact that the image of a connected space under a continuous
map is connected (Theorem 2.40).

Theorem 3.6 (Extreme value theorem). Let f : X −→ Y be continuous, where Y is an ordered
set in the order topology. If X is compact, then there exist points c and d in X such f(c) ≤ f(x) ≤ f(d)
for every x ∈ X.

Proof. Since f is continuous and X is compact, the set A = f(X) is compact. We show that A has
a largest element M and a smallest element m. Then since m and M belong to A, we must have
m = f(c) and M = f(d) for some points c and d of X.
If A has no largest element, then the collection

{(−∞, a) | a ∈ A}

forms an open covering of A. Since A is compact, some finite subcollection

{(−∞, a1), · · · , (−∞, an)}

covers A. If ai is the largest of the elements a1, · · · , an, then ai belongs to none of these sets, contrary
to the fact that they cover A.
A similar argument shows that A has a smallest element.

The intermediate value and extreme value theorems of calculus are the special cases of the above two
theorems that occur when we take X to be a closed interval in R and Y to be R.

We shall now prove the result that R is uncountable. What is interesting about this proof is that it
involves no algebra at all - no decimal or binary expansions - just the order properties of R.
We will first take a step back and revisit compact spaces.

Definition 3.7. A collection C of subsets of X is said to have the finite intersection property if
for every finite subcollection

{C1, C2, · · · , Cn}

of C, the intersection C1 ∩ · · · ∩ Cn is nonempty.

Theorem 3.8. Let X be a topological space. Then X is compact if and only if for every collection C
of closed sets in X having the finite intersection property, the intersection

⋂
C∈C

C of all the elements of

C is nonempty.

Proof. Given a collection A of subsets of X, let

C = {X −A | A ∈ A}

be the collection of their complements. Then the following statements hold:
(1) A is a collection of open sets if and only if C is a collection of closed sets.

15
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(2) The collection A covers X if and only if the intersection
⋂
C∈C

C of all the elements of C is empty.

(3) The finite subcollection {A1, · · · , An} of A covers X if and only if the intersection of the
corresponding elements Ci = X −Ai of C is empty.

The first statement is trivial, while the second and third follow from DeMorgan’s law:

X −

(⋃
α∈J

Aα

)
=
⋂
α∈J

(X −Aα)

The proof of the theorem now proceeds in two easy steps: taking the contrapositive (of the theorem),
and then the complement (of the sets)!
The statement that X is compact is equivalent to saying: “Given any collection of A of open subsets
of X, if A covers X, then some finite subcollection of A covers X.” This statement is equivalent to its
contrapositive, which is the following, “Given any collection A of open sets, if no finite subcollection
of A covers X, then A does not cover X.”
Letting C be, as earlier, the collection {X−A | A ∈ A} and applying (1)-(3), we see that this statement
is in turn equivalent to the following: “Given any collection C of closed sets, if every finite intersection
of elements of C is nonempty, then the intersection of all the elements of C is nonempty.” This is just
the condition of our theorem.

A special case of this theorem occurs when we have a nested sequence C1 ⊃ C2 ⊃ · · ·Cn ⊃ Cn+1 ⊃
· · · of closed sets in a compact space X. If each of the sets Cn is nonempty, then the collection
C = {Cn}n∈Z+

, automatically has the finite intersection property. Then the intersection⋂
n∈Z+

Cn

is nonempty.

Definition 3.9. If X is a space, a point x of X is said to be an isolated point of X if the one-point
set {x} is open in X.

Lemma 3.10. Let A be a subset of a topological space X.
Then x ∈ Ā if and only if every open set U containing x intersects A.

Proof. Writing the contrapositive of the statement gives us:
x 6∈ Ā ⇐⇒ there exists an open set U containing x that does not intersect A.
In this form, the theorem is easier to prove. If x is not in Ā, the set U = X − Ā is an open set x that
does not intersect A, as desired.
Conversely, if there exists an open set U containing x which does not intersect A, then X − U is a
closed set containing A. By definition of the closure Ā, the set X − U must contain Ā; therefore x
cannot be in Ā.

Lemma 3.11. Let A and B be subsets of a topological space X.
If A ⊂ B, then Ā ⊂ B̄.

Proof. As B ⊂ B̄, we have it that A ⊂ B̄.
As B̄ is a closed set that contains Ā, it follows from the definition of closure that Ā ⊂ B̄.

Theorem 3.12. Let X be a nonempty compact Hausdorff space. If X has no isolated points, then X
is uncountable.

Proof. Step 1. We show first that given any nonempty open set U of X and any point x of X, there
exists a nonempty open set V contained in U such that x 6∈ V .
Choose a point y of U different from x; this is possible if x is in U because x is not an isolated point of
X and it is possible if x is not in U simply because U is nonempty. Now choose disjoint open sets W1

and W2 about x and y, respectively. Then the set V = W2 ∩ U is the desired open set; it is contained
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in U, it is nonempty because it contains y. As there exists a neighbourhood (W1) of x that does not
intersect V, we have it that x 6∈ V . (By Lemma 3.10.)

Step 2. We show that given f : Z+ −→ X, the function f is not surjective. It follows that X
is uncountable.
Let xn = f(n). Apply Step 1 to the nonempty open set U = X to choose a nonempty open set
V1 ⊂ X such that V1 does not contain x1. In general, given Vn−1 open and nonempty, choose Vn to be
a nonempty open set such that Vn ⊂ Vn−1 and Vn does not contain xn. Consider the nested sequence

V1 ⊃ V2 ⊃ · · ·

of nonempty closed sets of X. (Note that we have used the preceding lemma to conclude that the
sequence of these closures is nested.) Because X is compact, there is a point x ∈

⋂
Vn, by Theorem

3.8. Now, x cannot equal xn for any n, since x belongs to Vn and xn does not.

If we take X = [0, 1], it can be seen that X is a nonempty compact Hausdorff space with no isolated
points. Thus, X is an uncountable set. As a result, R is uncountable.
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4. Manifolds

First, let us define some standard subsets of Rn for any n ∈ Z+ :

En = {x ∈ Rn | ‖x‖ ≤ 1},

Bn = {x ∈ Rn | ‖x‖ < 1},

Sn−1 = {x ∈ Rn | ‖x‖ = 1}.

These spaces are called the closed n-dimensional disc or ball, the open n-dimensional disc or ball, and
the (n− 1)−dimensional sphere, respectively.
Following [2], we shall now define manifolds in the following manner.

Definition 4.1. An n-dimensional manifold is a Hausdorff space such that each point has an open
neighbourhood homeomorphic to the open n-dimensional disc Bn. Usually we shall say “n−manifold”
for short.

Examples.

1. Rn is obviously an n−manifold. Given any x ∈ Rn, the 1−ball B(x, 1) is a neighbourhood which
is clearly homeomorphic to Bn.

2. We can prove that the unit n−dimensional sphere

Sn = {x ∈ Rn+1 | ‖x‖ = 1}

is an n−manifold.
For the point x = (1, 0, · · · , 0) ∈ Sn, the set {(x1, · · · , xn) ∈ Sn | x1 > 0} is a neighbourhood
with the required properties, as we see by orthogonal projection on the hyperplane in Rn+1

defined by x1 = 0. For any other point x ∈ Sn, there is a rotation carrying x into the point
(1, 0, · · · , 0). Such a rotation is a homeomorphism of Sn onto itself; hence, x also has the
required kind of neighbourhood.

An n−manifold may be either connected or disconnected, compact or noncompact.
Compact Manifold: S1 is a compact 1−manifold.
Noncompact Manifold: B1 is a noncompact 1−manifold.
Connected Manifold: Both of the above.
Disconnected Manifold: (−1, 1) ∪ (2, 4) is a disconnected 1−manifold.

Note that in our definition, we required that a manifold satisfy the Hausdorff condition. We
must make this requirement explicit in the definition because it is not a consequence of the other
conditions imposed on a manifold.

5. Orientable vs. Non-orientable Manifolds

Connected n−manifolds for n > 1 are divided into two kinds: orientable and non-orientable. We will
try to make the distinction clear for n = 2 without striving for mathematical precision.
We can prescribe in various ways an orientation for R2 or, more generally, for a small region in the
plane. One way would be to prescribe which direction of rotation in the plane about a point is to be
considered the positive direction and which is to be considered the negative direction. Let us imagine
an intelligent bug constrained to move in the plane; once it decides on a choice of orientation at any
point in the plane, it can carry this choice with it as it moves about. If two such bugs agree on an
orientation at a given point in the plane, and one of them travels on a long trip to some distant point
in the plane and eventually returns to its starting point, both bugs will still agree on their choice of
orientation.
Similar considerations apply to any connected 2−dimensional manifold because each point has a neigh-
bourhood homeomorphic to a neighbourhood of a point in the plane. Here our two hypothetical bugs
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agree on a choice of orientation at a given point. It is possible, however, that after one of them returns
from a long trip to some distant point on the manifold, they may find that they are no longer in
agreement. This phenomenon can occur even though both were meticulously careful about keeping an
accurate check of the positive orientation.
The simplest example of a 2−dimensional manifold exhibiting this phenomenon is the well-known
Möbius strip.
Mathematically, a Möbius is a topological space that is described as follows. Let X denote the following
rectangle in the plane:

X = {(x, y) ∈ R2| − 10 ≤ x ≤ 10,−1 < y < 1}

We then form a quotient space of X by identifying the points (10, y) and (−10,−y) for −1 < y < 1.
This quotient space is the Möbius strip. Alternately, we could specify a certain subset of R3 which is
homeomorphic to the quotient space just described. Note that this is not a compact manifold. (Due
to omission of the y = ±1 “boundaries”.)
The center line of the rectangular strip becomes a circle after gluing or identification of the two ends.
We leave it to the reader to verify that if our imaginary bug started out any points on this circle
with a definite choice of orientation and carried this orientation with it around the circle once, it
would come back to this initial point with its original orientation reverse. We will call such a path in
manifold an orientation-reversing path. A closed path that does not have this property will be called
an orientation-preserving path. For example, any closed path in the plane is orientation preserving.

A connected 2−manifold is defined to be orientable if every closed path is orientation preserv-
ing; a connected 2−manifold is non-orientable if there is at least one orientation-reversing path.

6. Examples of Compact, Connected 2−Manifolds

From now on, we shall refer to a connected 2−manifold as a surface. The simplest example of a
compact surface is the 2−sphere S2; another important example is the torus. A torus may be precisely
defined in the following manner:
Let X denote the closed unit square in the plane R2 :

{(x, y) ∈ R2 | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

Then, a torus is any space homeomorphic to the quotient space of X obtained by identifying opposite
sides of the square X according to the following rules. The points (0, y) and (1, y) are to be identified
for 0 ≤ y ≤ 1, and the points (x, 0) and (x, 1) are to be identified for 0 ≤ x ≤ 1.

We will find it convenient to indicate symbolically how such are made by a diagram such as Figure 1.
Sides that are to be identified are labeled with the same letter of the alphabet, and the identifications
should be made so that the directions indicated by the arrows agree.
Our next example of a compact surface is the real projective plane (referred to as the projective plane

b

a

b

a

Figure 1: Construction of a torus

for short). It is a compact, non-orientable surface. As it is not homeomorphic to any subset of R3, the
project plane is much more difficult to visualise than the 2−sphere or the torus.

19



Classification of Surfaces -Aryaman Maithani

Definition 6.1. The quotient space of the 2−sphere S2 obtained by identifying every pair of diamet-
rically opposite points is called a projective plane. We shall also refer to any space homeomorphic to
this quotient space as a projective plane.

Let H = {(x, y, x) ∈ S2|z ≥ 0} denote the closed upper hemisphere of S2. It is clear that, of each
diametrically opposite pair of points in S2, at least one point lies in H. If both points lie in H, then
they are on the equator, which is the boundary of H. Thus, we could have also defined the projective
plane as the quotient space of H obtained by identifying diametrically opposite points on the boundary
of H. As H is obviously homeomorphic to the closed unit disc E2 is the plane,

E2 = {(x, y) ∈ R2|x2 + y2 ≤ 1},

the quotient space of E2 obtained by identifying diametrically opposite points on the boundary is a
projective plane. This can be visualised by projecting the upper hemisphere of S2 onto the R2.
For E2, we could substitute any homeomorphic space, e.g., a square. Thus a projective plane is
obtained by identifying the opposite sides of a square as indicated in Figure 2. The projective plane

b

a

b

a

Figure 2: Construction of a projective plane

is easily seen to be non-orientable; in fact, it contains a subset homeomorphic to Möbius strip.

Definition 6.2. A planar diagram is a polygon with 2n edges where pairs of edges are identified with
either the same or opposite orientation. Given the quotient topology, the labeled edges are identified
or glued together.

It can be verified that the two figures seen earlier were indeed planar diagrams.
Given a planar diagram, here is how we check which vertices are to be identified:

a
A B

Figure 3: We say that above edge ends at B and starts at A.

Choose any vertex and call it A1. Two edges meet at this vertex. For any edge that ends at A1, mark
the end of its paired edge with A1. Similarly, for any edge that starts at A, mark the start of its paired
edge with A1. Repeat this process at new vertices just marked and continue as much as possible. If
there are vertices left that are not labeled, choose any one and label it A2 and proceed similarly.
If we follow this procedure for the diagrams seen earlier, we’ll see that all vertices are identified in
Figure 1 and the opposite vertices are identified in Figure 2.
We now introduce a rather obvious and convenient method of indicating precisely which paired edges
are to be identified in such a polygon. Consider the diagram which indicates how the edges are
identified; starting a definite vertex, proceed around the boundary of the polygon, recording the
letters assigned to the different sides in succession. If the arrow on a side points in the same direction
that we are going around the boundary, then we write the letter for that side with no exponent (or
the exponent +1). On the other hand, if the arrow points in the opposite direction, then we write
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the letter for that side with the exponent −1. For example, in Figures 1 and 2, the identifications are
precisely indicated by the symbols

bab−1a−1 and baba.

In both the cases, we started at the lower left vertex and went around in the clockwise direction.
Using this definition, let us now define a “Klein Bottle.”

Definition 6.3. A Klein Bottle is any space homeomorphic to the surface represented by the planar
diagram indicated by the symbol

abab−1.

a

b

a

b

Figure 4: Construction of a Klein Bottle from a square.

Let us now see how we can construct a simpler planar diagram for a projective plane. We have
considered the projective plane as the quotient space of a circular disc; diametrically opposite points
on the boundary are to be identified. By choosing a pair of diametrically opposite points as vertices,
the circumference of the disc is divided into two segments. Thus, we can regard the projective plane
as obtained from a 2−gon by identification of two edges, see Figure 5.

a

a

Figure 5: The projective plane is obtained by identifying opposite edges of a 2−gon.

For the rest of this paper, planar diagrams will consist of the following three types of lines: continuous
lines for a single edge, dashed lines for “cut” edges, and squiggly lines for set of edge(s).
We shall now describe a mechanism that helps us manipulate planar diagrams in a way that does not
change the space represented by the diagram.

Lemma 6.4. The surface represented by a planar diagram after any of the following manipulations
is homeomorphic to the original surface. The lower letter a represents an edge and capital letters
A, B, C, D represent a sequence of edges.

(1) Cutting. Cutting is of the form AB = (Aa and aB) where a is the cut edge.
(2) Gluing. Gluing is of the form (ABa and aCD) = ABCD.

Proof. It suffices to show that there exists a local homeomorphism at any point of the edge being
cut/glued. Figure 6 illustrates this.
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a a

a

Figure 6: The neighbourhood around a point along a cut edge remains a full disc.

7. Connected Sums

We shall now describe how to give many additional examples of compact surfaces by forming what are
called connected sums. Let S1 and S2 be disjoint surfaces. Their connected sum, denoted by S1#S2,
is formed by cutting a small “circular” hole in each surface, and then gluing the two surfaces together
along the boundaries of the holes. To be precise, we choose subsets D1 ⊂ S1 and D2 ⊂ S2 such that
D1 and D2 are homeomorphic to E2. Let S′i denote the complement of the interior of Di in Si for
i = 1 and 2. Choose a homeomorphism h of the boundary circle of D1 onto the boundary D2. Then
S1#S2 is the quotient space of S′1∪S′2 obtained by identifying points x and h(x) for all points x in the
boundary of D1. Is it clear that S1#S2 is a surface. It can be proven rigorously that the topological
type of S1#S2 does not depend on the choice of the discs D1 and D2 or the choice of homeomorphism
h.
It is clear from our definition that there is no distinction between S1#S2 and S2#S1; that is, the
operation is commutative. It is not difficult to see that the manifolds (S1#S2)#S3 and S1#(S2#S3)
are homeomorphic. This means that we can talk about connected sum of multiple surfaces without
any ambiguity.
The connected sum of two orientable manifolds is again orientable. On the other hand, if either S1 or
S2 is non-orientable, then so is S1#S2.

Lemma 7.1. The connected sum of two projective planes is a Klein Bottle.

Proof.

(1)

a

a

d

c

c

d

(2)

a

d

a

c

d

c
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(3)

a c

ca

b

(4)

a c

ca

b

b

(5)

b a

ba

c

c

(6)

b a

ba

We start with two projective planes with holes cut in (1); using a series of cutting and gluing of
edges, we arrive at (6), which represents a Klein Bottle. As all the diagrams represent homeomorphic
surfaces, we have proven the lemma.

Note that in the above proof, we have implicitly assumed two more manipulations do not change the
surface. Namely, rotating the diagram and reversing all the arrows. It is obvious that these manipu-
lations preserve the homeomorphism type. (That is, the surface represented after the manipulation is
homeomorphic to the original one.)
We will see some more connected sums in a while. Before we see those, let us state the main theorem
that we are trying to prove that will motivate the discussion of the next connected sums.

8. Statement of the Classification Theorem for Compact Surfaces

Theorem 8.1. Any compact surface is either homeomorphic to a sphere, or to a connected sum of
tori, or to a connected sum of projective planes.

As preparation for the proof, we shall describe what might be called a “canonical form” for a connected
sum of tori or projective planes.
Recall our description of a torus as a square with the opposite sides identified (Figure 1). We can
obtain an analogous description of the connected sum of two tori as follows. Represent each of the tori
T1 and T2 as a square with opposite sides identified as shown in Figure 7(a). Note that all four vertices
of each square are identified to a single point of the corresponding torus. To form their connected
sum, we must first cut out a circular hole in each torus, and we can do this in any way that we wish.
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It is convenient to cut out the regions indicated in the diagrams. The boundaries of the holes are
labeled c1 and c2, and they are to be identified as indicated by the arrows. We can also represent the
complement of the holes in the two tori by the pentagons shown in Figure 7(b), because the indicated
edge identifications imply that the two end points of the segment ci are to be identified, i = 1, 2. We
now identify the segments c1 and c2; the result is the octagon in Figure 7(c), in which the sides are to
be identified in pairs, as indicated. Note that all eight vertices of this octagon are to be identified to
a single point in T1#T2.

b1 a1

b1a1

c1T1

b2 a2

b2a2

c2 T2

(a)

b1
a1

b1
a1

c1T1 c2

b2
a2

b2
a2

T2

(b)

cT1 T2

b1

a1 b2

a2

b2

a2b1

a1

(c)

Figure 7: (a) Two disjoint tori, T1 and T2. (b) Disjoint tori with holes cut out. (c) After gluing
together.

24



Classification of Surfaces -Aryaman Maithani

This octagon with the edges identified in pairs is our desired “canonical form” for the connected sum
of two tori. By repeating this process, we can show that the connected sum of three tori is the quotient
space of the 12−gon shown in Figure 8, where the edges are to be identified in pairs as indicated. It
can be proven via induction that the connected sum of n tori is homeomorphic to the quotient space
of a 4n−gon whose edges are to be identified according to a particular scheme, which we will precisely
describe later.

a1

b1

a1 b1

a2

b2

a2

b2

a3b3

a3

b3

Figure 8: The connected sum of three tori is obtained by identifying the edges of a 12−gon in pairs as
shown.

Next, we must consider the analogous procedure for the connected sum of projective planes. Figure 9
shows how to obtain a representation of the connected sum of two projective planes as a square with
edges identified in pairs. The method is basically the same as that used to obtain a representation of
the connected sum of two tori as a quotient space of an octagon (Figure 7). By repeating this process,
we see that the connected sum of three projective planes is the quotient space of a hexagon identified
in pairs as indicated in Figure 10. By induction, we can prove that, for any positive integer n, the
connected sum of n projective planes is the quotient space of a 2n−gon with the sides identified in
pairs according to a certain scheme. Note that all the vertices of this polygon are identified to one
point.
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a1

a1

c1

a2

a2

c1P1 P2

(a)

a1

c1

a1

a2

c2

a2

P1 P2

(b)

a1

c

a1

a2

a2

P1 P2

(c)

Figure 9: (a) Two disjoint projective planes, P1 and P2. (b) Disjoint projective planes with holes cut
out. (c) After gluing together.

a1

a1

a2

a2

a3

a3

Figure 10: The connected sum of three projective is obtained by identifying the edges of a hexagon in
pairs as shown.

It remains to represent the sphere as the quotient space of a polygon with the sides identified in pairs.
We can do this as shown in Figure 11. We can visualise a sphere with a zipper; when the zipper is
open, the sphere can be flattened out.
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a

a

Figure 11: The sphere is a quotient space of a 2−gon with edges identified as shown.

Thus, we have shown how each of the compact surface mentioned in Theorem 8.1 can be considered
as the quotient space of a polygon with edges identified in pairs.

We summarise our results by writing the symbols corresponding to each of the surfaces men-
tioned in Theorem 8.1.

1. The sphere: aa−1.
2. The connected sum of n tori:

a1b1a
−1
1 b−11 a2b2a

−1
2 b−12 · · · anbna−1n b−1n .

3. The connected sum of n projective planes:

a1a1a2a2 · · · anan.

9. Triangulations of Compact Surfaces

Definition 9.1. A triangulation of a compact surface S consists of a finite family of closed subsets
{T1, T2, · · · , Tn} that cover S, and a family of homeomorphisms ϕ : T ′i −→ Ti, i = 1, · · · , n where each
T ′i is a triangle in the plane R2 (i.e., a compact subset of R2 bounded by three distinct straight lines).
The subsets Ti are called “triangles.” The subsets of Ti that are the images of the vertices and edges
of the triangle T ′i under ϕi are also called “vertices” and “edges,” respectively. Finally, it is required
that any two distinct triangles, Ti and Tj , either be disjoint, have a single vertex in common, or have
one entire edge in common.

Figure 12 shows three unallowable types of intersection of triangles. Given any compact surface S, it

T1

T2

T3 T4 T5 T6

Figure 12: Some types of intersections forbidden in a triangulation.

seems plausible that there should exist a triangulation of S. It is indeed the case, as was proven by T.
Radó. Proving this is not trivial but we will take this for granted.
We can regard a triangulated surface as having been constructed by gluing together the various
triangles in a certain way, much as we put together a jigsaw puzzle. As two different triangles cannot
have the same vertices, we can specify completely a triangulation of a surface by numbering the
vertices, and then listing which triples of vertices are vertices of a triangle. Such a list of triangles
completely determines the surface together with the given triangulation up to homeomorphism.
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Some Triangulations:

1) The surface of an ordinary tetrahedron in R3 is homeomorphic to the sphere S2; moreover,
the four triangles satisfy all the conditions for a triangulation of S2. In this case, there are four
vertices, and every triple of vertices is the set of vertices of a triangle.

2) In Figure 13, we show a triangulation of the projective plane, considered as the space ob-
tained by identifying diametrically opposite points on the boundary of a disc. The vertices are
numbered from 1 to 6, and there are the following 10 triangles:

124 245
235 135
156 126
236 346
134 456

1

2

3

1

2

3

4

5

6

Figure 13: A triangulation of the projective plane.

3) In Figure 14, we show a triangulation of a torus, regarded as a square with the opposite sides
identified. There are 9 vertices, and the following 18 triangles:

124 245 235
356 361 146
457 578 658
689 649 479
187 128 289
239 379 137

We conclude our discussion of triangulations by noting that any triangulation of a compact surface S
satisfies the following two conditions:

(1) Each edge is an edge of exactly two triangles.
(2) Let v be a vertex of a triangulation. Then we may arrange the set of all triangles with v as

a vertex in cyclic order, T0, T1, · · · , Tn−1, Tn = T0, such that Ti and Ti+1 have an edge in
common for 0 ≤ i ≤ n− 1.

The truth of (1) follows from the fact that each point on the edge in question must have an open
neighbourhood homeomorphic to the open disc B2. If an edge were an edge of only one triangle or
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1 2 3 1

4
5 6

4

7
8 9

7

1 2 3 1

Figure 14: A triangulation of a torus.

more than two triangles, this would not be possible. The rigorous proof of this last assertion can be
given using the concept of “The local homology groups at a point.” We will omit this.
Condition (2) can be demonstrated as follows.
Given v, let us define two triangles Ai and Aj having v as a vertex to be equivalent if there is a sequence
of triangles having v as a vertex, beginning with Ai and ending with Aj , such that the intersection of
each triangle with its successor is an edge of each. If there is more than one equivalence class, let B be
the union of the triangles in one class and C be the union of the others. The sets B and C intersect
in v alone because no triangle in B has an edge common with a triangle in C. We conclude that for
every sufficiently small neighbourhood W of v in X, the space W − {v} is not connected.
On the other hand, if S is a surface, then v has a neighbourhood homeomorphic to B2. In this case, v
has arbitrarily small neighbourhoods W such that W−{v} is connected (Lemma 2.45), a contradiction.
Thus, we have shown that since S is a surface, a situation such as that indicated in Figure 15 cannot
happen.
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Ai

Ajv

Figure 15: Such a case is not possible.

10. A Surprising Lemma

We will now state and prove a surprising lemma that will help us later.

Lemma 10.1. The connected sum of a torus and a projective plane is homeomorphic to the connected
sum of three projective planes.

Proof.

(1)

a

a

d

b c

bc

d

(2)

a

d

a

d

b
c

b
c
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(3)

a

b

c

b

c

a

(4)

a

b

c

b

c

a

e

(5)

e

e

a

b

c

b

c

a

(6)

a

e

c

b

c

b

e

(7)

b

c

e

c

b

e

(8)

e

b

c

e

c

b

(9)

e

b

c

e

c

b

f

(10)

e

b

c

e

c

b

f f

(11)

b

f

f

e

b

e

c c

(12)

b

f

f

e

b

e

g

(13)

b

f

f

e

b

e

gg

(14)

g

g

f

f

e

e

bb
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(15)

g

g

f

f

e

e

We start with a projective plane and a torus with holes cut in (1); using a series of cutting and gluing
of edges, we arrive at (15), which represents the connected sum of three projective planes (see Figure
10). As all the diagrams represent homeomorphic surfaces, we have proven the lemma.

We now have all the preliminaries required for the proof of Theorem 8.1.
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11. Proof of The Theorem

Let S be a compact surface. We shall demonstrate Theorem 8.1 by proving that S is homeomorphic
to a polygon with the edges identified in pairs as indicated by one of the symbols listed at the end of
Section 8.

First step. From the discussion in the Section 9, we may assume that S is triangulated. Denote the
number of triangles by n. We assert that we can number the triangles T1, T2, · · · , Tn, so that the
triangle Ti has an edge ei in common with at least one of the the triangles T1, · · · , Ti−1 for 2 ≤ i ≤ n.
To prove this assertion, label any of the triangles T1; for T2 choose any triangle that has an edge in
common with T1, for T3 choose any triangle that has an edge in common with T1 or T2, et cetera. If at
any stage we could not continue this process, then we would have two sets of triangles {T1, · · · , Tk}
and {Tk+1, · · · , Tn} such that no triangle in the first set would have an edge or vertex in common
with any triangle of the second set. But this would give a partition of S into two disjoint non-empty
closed sets, contrary to the assumption that S was connected.
We now use this ordering of triangles, T1, T2, · · · , Tn, together with the choice of edges e2, e3, · · · ,
en, to construct a “model” of the the surface S on the Euclidean plane; this model will be a polygon
whose sides are to be identified in pairs. Recall that for each triangle Ti, there exists an ordinary
Euclidean triangle T ′i in R2 and a homeomorphism ϕi of T ′i onto Ti. We can assume that the triangles
T ′1, T

′
2, · · · , T ′n are pairwise disjoint; if they are not, we can translate some of them to various other

parts of the plane R2. Let

T ′ =

n⋃
i=1

T ′i ;

then T ′ is a compact subset of R2. (T ′ is a finite union of closed and bounded subsets and is thus,
closed and bounded itself. Compactness follows from Theorem 2.55.)
Define a map ϕ : T ′ −→ S by ϕ|T ′i = ϕi; the map ϕ is obviously continuous and onto. As T ′ is
compact, any closed subset A of T ′ is compact (Theorem 2.50). Thus, ϕ(A) ⊂ S is compact. As S is
a Hausdorff space, ϕ(A) is closed (Theorem 2.51). Therefore, ϕ is a closed map, and hence S has the
quotient topology induced by ϕ (Lemma 2.32).
This is a rigorous mathematical statement of out intuitive idea that S is obtained by gluing the triangles
T1, T2, · · · together along the appropriate edges.
The polygon we desire will be constructed as a quotient space of T ′. Consider any of the edges ei, 2 ≤
i ≤ n. By assumption, ei is a edge of the triangle Ti and on other triangle Tj , for which 1 ≤ j < i.
Therefore ϕ−1(ei) consists of an edge of the triangles T ′i and T ′j by identifying points which map onto
the same point of ei. We make these identifications for each of the edges e2, e3, · · · , en. Let D denote
the resulting quotient space of T ′. It is clear that the map ϕ : T ′ −→ S induces a map ψ of D onto S.
As D is compact and S Hausdorff, ψ is a closed map. (By the same reasoning we used for ϕ.) Thus,
S has the quotient topology induced by ψ.
We now assert that topologically, D is a closed disc. The proof depends on two facts:

(a) Let E1 and E2 be disjoint spaces, which topologically are closed disc (i.e., they are homeomorphic
to E2). Let A1 and A2 be subsets of the boundary of E1 and E2, respectively, which are homeo-
morphic to the closed interval [0, 1], and let h : A1 −→ A2 be a definite homeomorphism. Form
a quotient space of E1 ∪ E2 by identifying points that correspond under h. Then, topologically,
the quotient space is also a closed disc.
This can be demonstrated as follows. Given E1 and A1, we can find a homeomorphism h1 such
that h1 maps E1 to a closed unit square S1 and A1 to one of its edges. We can similarly map E2

to a square S2 and A2 to one of its edge. Now, we identify the edges of the squares. It can be
easily seen that this quotient space is homeomorphic to a closed rectangle that is twice as long
as it is wide. This rectangle is, in turn, homeomorphic to E2.

(b) In forming the quotient space D of T ′, we may either make all the identifications at once, or make
the identifications corresponding to e2, then those corresponding to e3, et cetera, in succession.
This can shown by using induction and the fact that ei 6= ej if i 6= j.
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We now use these facts to prove that D is a disc as follows. T ′1 and T ′2 are topologically equivalent to
discs. Therefore, the quotient space of T ′1 ∪ T ′2 obtained by identifying points of ϕ−1(e2) is again a
disc by (a). Form a quotient space of this disc and T ′3 by making the identifications corresponding to
the edge e3, et cetera.
It is clear that S is obtained from D by identifying certain paired edges on the boundary of D.

Second step. Elimination of adjacent edges of the first kind. We have now obtained a polygon
D whose edges have to be identified in pairs to obtain the given surface S. These identifications may
be indicated by the appropriate symbol.
If the letter designating a certain pair of edges occurs with both exponents +1 and −1, in the symbol,
then we will call that pair of edges a pair of first kind; otherwise, the pair is of the second kind.
We wish to show that an adjacent pair of edges of the first kind be eliminated, provided there
are at least four edges in all. This is easily seen from the sequence of diagrams in Figure 16.
We can continue this process until all such pairs are eliminated, or until we obtain a polygon
with only two sides. In the latter case, this polygon, whose symbol will be aa or aa−1, must be a
projective plane or a sphere, and we have completed the proof. Otherwise, we must continue as follows.

a a a a

a a a

(a) (b)

(c) (d)

Figure 16: Elimination of an adjacent pair of edges of the first kind.

Third step. Transformation to a polygon such that all vertices must be identified to a single vertex.
Although the edges of our polygon must be identified in pairs, the vertices may be identified in sets of
one, two, three, et cetera. Let us call two vertices of the polygon equivalent if and only if they are to
be identified. Some equivalence classes contain only one vertex, whereas other classes contain two or
three.
Assume we have carried out step two as far as possible. We wish to prove that we can transform our
polygon into another polygon with all its vertices belonging to one equivalence class.
Suppose there are at least two different equivalence classes of vertices. Then, the polygon must
have an adjacent pair of vertices which are non-equivalent. Label these vertices P and Q. Figure
17 shows how to proceed. As P and Q are non-equivalent, and we have carried out step two, it
follows that sides a and b are not to be identified. Make a cut along the line labeled c, from the
vertex labeled Q to the other vertex of the edge (i.e., to the vertex of edge a which is distinct
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a b

c

a

c b

c

a

P

QR RQ

PR PR

Q

(a) (b)

Figure 17: Third step in the proof.

from P ). Then, glue the two edges labeled a together. A new polygon with one less vertex in
the equivalence class of P and one more vertex in the equivalence class of Q results. If possible,
perform step two again. Then carry out step three to reduce the vertices in the equivalence
class of P still further, then do step two again. Continue alternately doing step three and step
two until the equivalence class of P is eliminated entirely. If more than one equivalence class of
vertices remains, we can repeat this procedure to reduce the number by 1. If we continue in this
manner, we ultimately obtain a polygon such that all the vertices are to be identified to a single vertex.

Fourth step. How to make any pair of edges of the second kind adjacent. We wish to show
that our surface can be transformed so that any pair of edges of the second kind are adjacent to
each other. Suppose we have a pair of edges of the second kind which are non-adjacent, as in Figure
18(a). Cut along the dotted line labeled a and paste together along b. As shown in Figure 18(b), the
two edges are now adjacent. Also, note that all adjacent pairs of edges that don’t include b are not
affected.

b b
a

a a

b

(a) (b)

Figure 18: Fourth step in the proof.

Continue this process until all pairs of edges of the second kind are adjacent. If there are no pairs
of the first kind, we are finished, because the symbol of the polygon must then be of the form
a1a1a2a2 · · · anan, and hence S is the connected sum of n projective planes.
Assume to the contrary that at this stage there is at least one pair of edges of the first kind, each
of which is labeled with the letter c. Then we assert that there is at least one other pair of edges
of the first kind such that these two pairs separate one another; i.e., edges from two pairs occur
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c c

A

B

Figure 19: A pair of edges of the first kind.

alternately as we proceed around the boundary of the polygon (hence, the symbol must be of the
form c . . . d . . . c−1 . . . d−1, where the dots denote the possible occurrence of other letters).
To prove this assertion, assume that the edges labeled c are not separated by any other pair
of the first kind. Then our polygon has the appearance indicated in Figure 19. Here A and
B designate a whole sequence of edges. The important point is that any edge in A must be
identified another edge in A, and similarly for B. (This is because all the pairs of second kind
are adjacent and we have assumed that no pair of first kind is separating the pair of edges labeled
c). Thus, no edge in A is to be identified with an edge in B. Let the vertex connecting c to
A be labeled P. All the vertices in A must be identified with P as A consists of adjacent pairs
of the second kind. As no edge of A is identified with any end of B and neither are the starting
points of edge c, the vertices of B must not be identified with P. This contradicts our activity of Step 3.

Fifth step. Pairs of the first kind. Suppose, then, that we have two pairs of the first kind
which separate each other as described (see Figure 20 (a)). We shall show that we can transform the
polygon so that the four sides in question are consecutive around the perimeter of the polygon.
First, cut along c and paste together along b to obtained Figure 20(b). Then cut along d and paste
together along a to obtain Figure 20(c), as desired.
Continue this process until all pairs of the first kind are in adjacent groups of four, as cdc−1d−1 in
Figure 20(c). If there are no pairs of the second kind, this leads to the desired result because, in that
case, the symbol must be of the form

a1b1a
−1
1 b−1a2b2a

−1
2 b−12 · · · anbna−1n b−1n

and the surface is the connected sum of n tori.

Sixth step. It remains to treat the case in which there are pairs of both the first and second
kind at this stage. The key to this situation is lemma 10.1 from earlier. Assume that after the fifth
step has been completed, the polygon has m pairs (m > 0) of the second kind sch that the two edges
of each pair are adjacent, and n quadruples (n > 0) of sides, each quadruple consisting of two pairs
of the first kind which separate each other. Then, the surface is the connected sum of m projective
planes and n tori, which by the lemma is homeomorphic to the connected sum of m + 2n projective
planes. This completes the proof of Theorem 8.1. �
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Figure 20: Fifth step in the proof.

12. The Euler Characteristic of a Surface

Although we have shown that any compact surface is homeomorphic to a sphere, a sum of tori, or a
sum of projective planes, we do not know that all these are topologically different. For example, it
could be the case that there exist positive integers m and n with m 6= n such that the sum of m tori
is homeomorphic to the sum of n tori.
It can be shown that this is not the case with the help of a numerical invariant called the Euler
characteristic.
First, we define the Euler characteristic of a triangulated surface. Let M be a compact surface with
triangulation {T1, · · · , Tn}. Let

v = total number of vertices of M,
e = total number of edges of M,

f = total number of triangles (in this case, t = n).

Then,
χ(M) = v − e+ f

is called the Euler characteristic of M.
It turns out that this number is independent of the way we choose to triangulate M. Moreover, it can
be shown that if M and N are homeomorphic, then χ(M) = χ(N).

Lemma 12.1. Let S1 and S2 be compact surfaces. The Euler characteristics of S1 and S2 and their
connected sum, S1#S2, are related by the formula

χ(S1#S2) = χ(S1) + χ(S2)− 2.
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Proof. Assume S1 and S2 are triangulated. Form their connected sum by removing from each the
interior of a triangle, and then identifying edges and vertices of the boundaries of the removed triangles.
The formula then follows by counting vertices, edges, and triangles before and after the formation of
connected sum.

From the triangulations of the sphere, torus and projective plane done before, we know their Euler
characteristics. Using the above lemma and an obvious induction, we obtain the following values for
the Euler characteristics.

Surface Euler characteristic
Sphere 2
Connected sum of n tori 2− 2n
Connected sum of n projective planes 2− n

The only case of overlap of Euler characteristics is that χ(nT 2) = χ(2nP 2) where nT 2 is the connected
sum of n tori and 2nP 2 is the connected sum of 2n projective planes. However, we observe that nT 2

is orientable whereas 2nP 2 is not as it contains a Möbius strip.

Assuming the topological invariance of the Euler characteristic and Theorem 8.1, we have the
following result:

Theorem 12.2. Let S1 and S2 be compact surfaces. Then, S1 and S2 are homeomorphic if and only
if their Euler characteristics are equal are both are orientable or both are non-orientable.
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